Crouzeix-Raviart triangular elements are inf-sup stable

نویسندگان

چکیده

The Crouzeix-Raviart triangular finite elements are inf \inf - form="prefix">sup encoding="application/x-tex">\sup stable for the Stokes equations any mesh with at least one interior vertex. This result affirms a conjecture of Crouzeix-Falk from 1989 alttext="p equals 3"> p = 3 encoding="application/x-tex">p=3 . Our proof applies to any odd degree greater-than-or-equal-to ? encoding="application/x-tex">p\ge 3 and concludes overall stability analysis: degree alttext="p"> encoding="application/x-tex">p in two dimensions piecewise polynomials minus 1"> ?<!-- ? <mml:mn>1 encoding="application/x-tex">p-1 vanishing integral form pair for all positive integers

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crouzeix-Raviart boundary elements

This paper establishes a foundation of non-conforming boundary elements. We present a discrete weak formulation of hypersingular integral operator equations that uses Crouzeix–Raviart elements for the approximation. The cases of closed and open polyhedral surfaces are dealt with. We prove that, for shape regular elements, this non-conforming boundary element method converges and that, up to log...

متن کامل

Intergenerational equity: sup, inf, lim sup, and lim inf

We study the problem of intergenerational equity for utility streams and a countable set of agents. A numerical social welfare function is invariant to ordinal transformation, satis…es a weak monotonicity condition, and an invariance with respect to concatenation of utility streams if and only if it is either the sup, inf, lim sup, or lim inf.

متن کامل

Grad-div Stabilization for the Evolutionary Oseen Problem with Inf-sup Stable Finite Elements

The approximation of the time-dependent Oseen problem using inf-sup stable mixed finite elements in a Galerkin method with grad-div stabilization is studied. The main goal is to prove that adding a grad-div stabilization term to the Galerkin approximation has a stabilizing effect for small viscosity. Both the continuous-in-time and the fully discrete case (backward Euler method, the two-step BD...

متن کامل

Inf-sup Stable Nonconforming Finite Elements of Higher Order on Quadrilaterals and Hexahedra

Abstract. We present families of scalar nonconforming finite elements of arbitrary order r ≥ 1 with optimal approximation properties on quadrilaterals and hexahedra. Their vector-valued versions together with a discontinuous pressure approximation of order r − 1 form inf-sup stable finite element pairs of order r for the Stokes problem. The well-known elements by Rannacher and Turek are recover...

متن کامل

On Evaluating the Inf–sup Condition for Plate Bending Elements

This paper addresses the evaluation of the inf–sup condition for Reissner–Mindlin plate bending elements. This fundamental condition for stability and optimality of a mixed nite element scheme is, in general, very di cult to evaluate analytically, considering for example distorted meshes. Therefore, we develop a numerical test methodology. To demonstrate the test methodology and to obtain speci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2022

ISSN: ['1088-6842', '0025-5718']

DOI: https://doi.org/10.1090/mcom/3742